

Weakly Supervised Semantic Segmentation in 3D Graph-Structured Point Clouds of Wild Scenes

Arithmer R3 team Daisuke SATO

2021/7/18

https://arxiv.org/abs/2004.12498v2

Point clouds

- 3D sensors have been developed rapidly these days.
 - iPhone/iPad has LiDAR
 - realsense/azure kinect is amazing considering its low price.
- Raw data collected is point cloud
 - Collection of 3D points

$$(x_{0}, y_{0}, z_{0})$$

$$(x_{1}, y_{1}, z_{1})$$

$$...$$

$$(x_{n}, y_{n}, z_{n})$$

Processing point cloud is quite important in robotics/measurement (測量).

3D Point Cloud

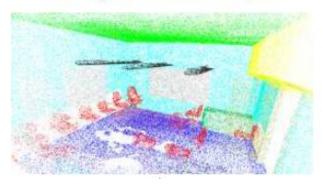
Task: semantic segmentation of point clouds

- Classifying every point of 3D point clouds
 - If we perform this task with supervised learning, we need to annotate each point.
 - Labeling point clouds is super exhausting.

- Labeling 2D image is easier.
- Let us do weakly supervised learning with 2D projected image.

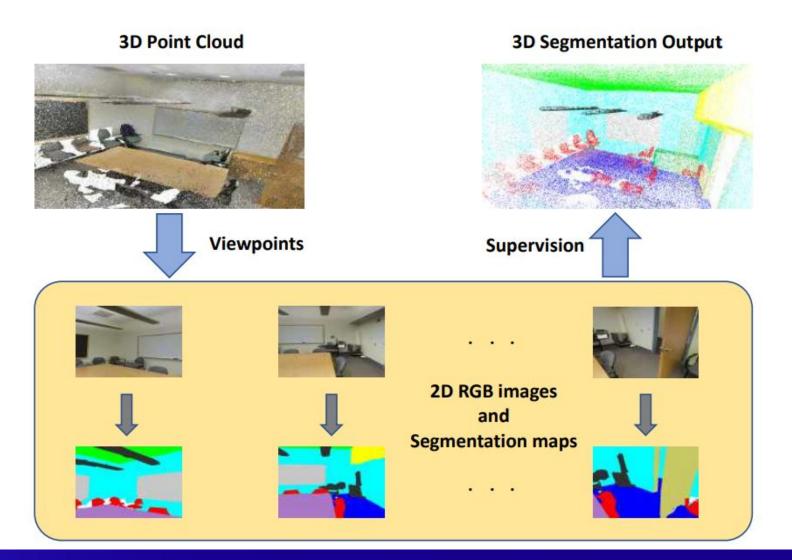
3D Point Cloud

3D Segmentation Output



Idea: weakly supervised learning with 2D projected image

Input is 3D point cloud

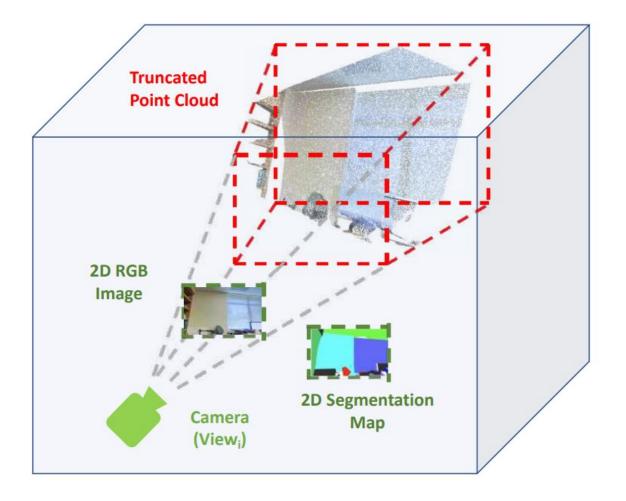


Output at inference stage is 3D segmented point cloud

Label at training stage is segmented 2D projected images

Note: Projection of 3D pointcloud onto 2D image

- Projection is described by the two parameters:
 - Internal camera parameters
 - Focal length (f)
 - principal point (c)
 - External camera parameters
 - \blacksquare Translation (t)
 - \blacksquare Rotation (R)



2D projection

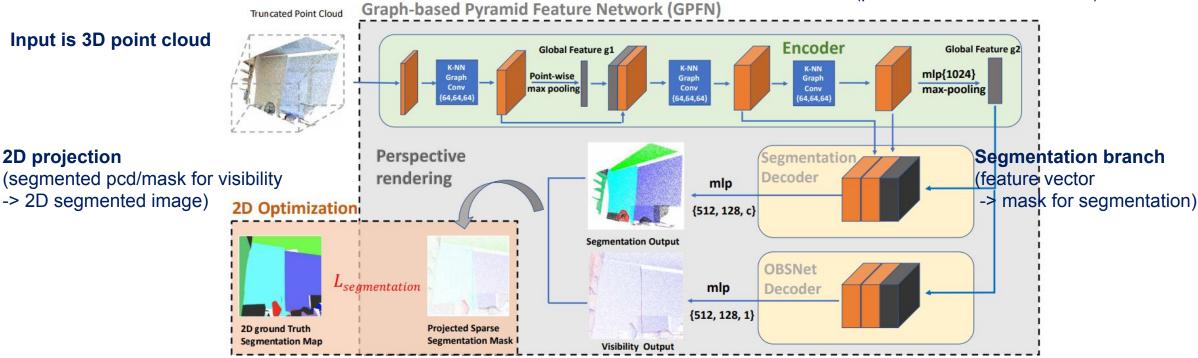
Model architecture

Graph convolution encoder

(point cloud -> feature vector)

Input is 3D point cloud

-> 2D segmented image)



$$L_{seg} = -\frac{1}{N} \sum_{i=1}^{N} \left[p_i \log \hat{p}_i + (1 - p_i) \log(1 - \hat{p}_i) \right]$$

Total loss
$$L = L_{seg} + \lambda L_{vis}$$

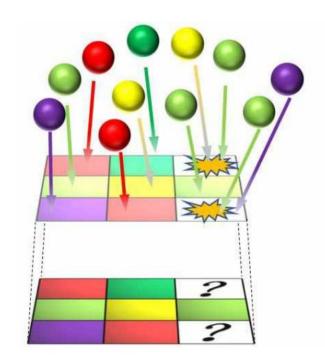
Visibility branch

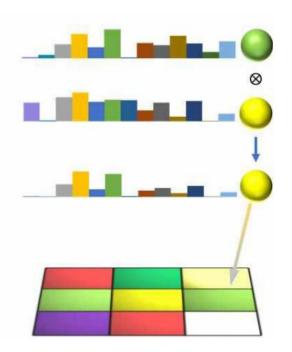
(feature vector -> mask for visibility)

$$L_{vis} = -\frac{1}{M} \sum_{i=1}^{M} \left[U_i \log \hat{U}_i + (1 - U_i) \log(1 - \hat{U}_i) \right]$$

Perspective rendering

 Problem: Multiple pointclouds can be projected onto a single pixel. Which class should we give the pixel? Solution: "Semantic fusion" (sophiscated voting system)





$$p(C_i|x_{grid}) = \prod_{n=1}^{N} p(C_i|x_n),$$

$$p(C_i|x_{grid})_{norm} = p(C_i|x_{grid}) / \sum_{i=1}^{n_{classes}} \prod_{n=1}^{N} p(C_i|x_n),$$

$$p(x_{grid}) = max\{p(C_1|x_{grid}), ..., p(x_{C_{n_{classes}}|grid})\}.$$

Experiments

Datasets

- SUNCG **Synthetic** dataset
 - class number: 40 (furniture)
 - o rooms: 404058
 - create 55000 2D rendering sets
- S3DIS Real-world dataset
 - class number: 13 (furniture)
 - o rooms: 272
 - thousands of viewpoints are provided

- Each point has
 - o position: (x, y, z)
 - \circ color: (r, g, b)
- Also normal is computed (u, v, w)

Experiments

Metrics

- mean accuracy of total classes (mAcc)
- overall accuracy (oAcc)

$$\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}$$

mean per-class intersection-over-union (mIoU)

$$\circ \quad IOU = TP / (TP + FP + FN)$$

Comparison with other fully-supervised methods

	Method	mAcc(%)	mIoU(%)	oAcc(%)
	PointNet [28]	66.2	47.6	78.5
3D Supervision	Engelmann et al. [10]	66.4	49.7	81.1
	PointNet++ [29]	67.1	54.5	81.0
	DGCNN [40]	-	56.1	84.1
	Engelmann et al. [11]	67.8	58.3	84.0
	<i>SPG</i> [19]	73.0	62.1	85.5
2D Supervision	GPFN with DP (Ours)	39.2	30.4	53.7
	GPFN with DP w/ D_v (Ours)	59.4	42.7	70.0
	GPFN with PR w/o D_v (Ours)	54.2	39.0	66.8
	GPFN with PR w/ D_v (Ours)	66.5	50.8	79.1

Not so bad even compared with fully-supervised learning.

Inference samples for SUNCG dataset

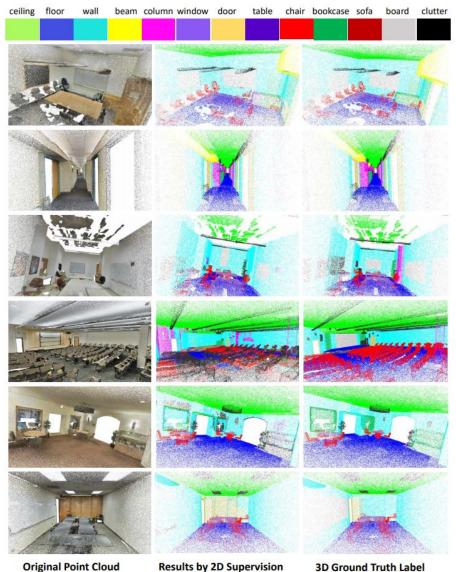
Original Point Cloud

Results by 2D Supervision

3D Ground Truth Label

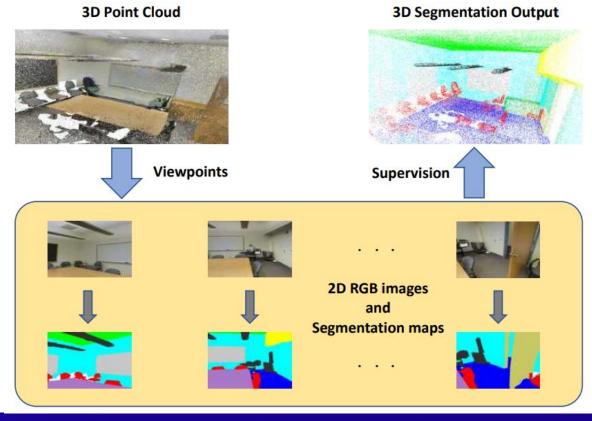
Experiments

Inference samples for S3DIS dataset



Conclusion

- To the best of our knowledge, this is the first work to apply 2D supervision for 3D semantic point cloud segmentation of wild scenes without using any 3D pointwise annotations.
- Extensive experiments are conducted and the proposed method achieves comparable performance with the state-of-the-art 3D supervised methods on the popular SUNCG and S3DIS benchmarks.



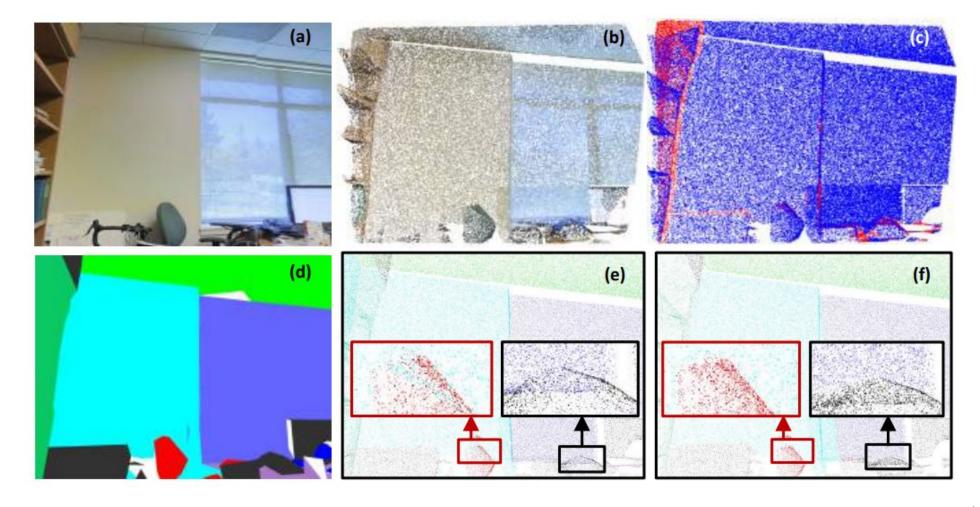
Arithmer

Arithmer 株式会社

〒106-6040 東京都港区六本木一丁目6番1号 泉ガーデンタワー 38/40F(受付) 03-5579-6683 https://arithmer.co.jp/

BACK UP

TITLE HERE



Ablation study: projection method/OBSNet decoder

Method	mAcc(%)	mIoU(%)	oAcc(%)
GPFN with DP (Ours)	61.9	45.0	73.4
GPFN with DP w/ D_v (Ours)	71.9	61.2	84.5
GPFN with PR w/o D_v (Ours)	65.3	50.8	79.1
GPFN with PR w/ D_v (Ours)	87.3	70.37	91.8

Ablation study - Encoder Design

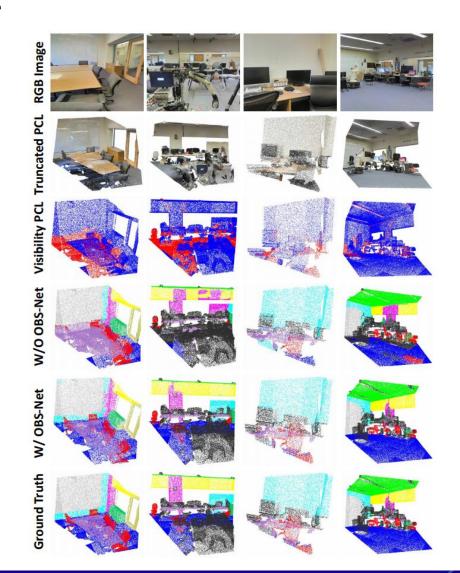
K-NN Graph	Pyramid	mAcc(%)	mIoU(%)	oAcc(%)
×	×	61.3	45.1	72.6
✓	×	65.1	48.6	78.4
×	✓	63.5	46.4	75.3
\checkmark	√	66.5	50.8	79.1

Ablation study - Amount of training data

Training data	mAcc (%)	mIoU (%)	oAcc (%)
All	67.0	52.5	81.5
1/2	66.9	51.8	80.9
1/4	66.7	50.9	79.5
1/6	66.5	50.8	79.1
1/12	56.5	39.3	66.2
1/20	37.8	29.1	40.0

Ablation study - Visibility detection by OBSNet

Dataset	Accuracy (%)					
	All	1/2	1/4	1/6	1/12	1/20
S3DIS	93.0	92.6	91.7	91.2	89.6	85.0



Transfer learning from synthesic to realistic dataset

Training Data	mAcc(%) mIoU(%)		oAcc(%)	
Train Scratch on S3DIS	66.5%	50.8%	79.1%	
Pretrained on SUNCG	67.0%	53.5%	81.3%	