

Summarizing Videos with Attention

Arithmer Dynamics Div. Christian Saravia

2020/12/15

Christian Martin Saravia Hernandez

- Graduate School
 - Universidad Peruana de Ciencias Aplicadas
 - Bs. Software Engineering
- Former Job
 - Ficha Inc
 - Algorithm Development Engineer
 - Research & application of deep learning in computer vision problems
- Current Job
 - Application of machine learning / deep learning to computer vision problems
 - Object detection
 - Object classification
 - Research topics
 - Attention & Transformers

Purpose of this material

Explore a solution to the task of video summarization using attention.

Contents

- Introduction
 - Motivation
 - Contributions
- Dataset
- VASNet
 - Feature Extraction
 - Attention Network
 - Regressor Network
- Inference
 - Changepoint Detection
 - Kernel Temporal Segmentation
- Results
 - Measuring method
 - Dataset Results

Introduction

Motivation

- Early video summarization methods were based on unsupervised methods, leveraging low level spatio-temporal features and dimensionality reduction with clustering techniques. Success of these methods solely stands on the ability to define distance/cost functions between the keyshots/frames with respect to the original video.
- Current state of the art methods for video summarization are based on recurrent encoder-decoder architectures, **usually with bi- directional LSTM or GRU and soft attention.** They are computationally demanding, especially in the bi-directional configuration.

Contribution

- 1. A novel approach to sequence to sequence transformation for video summarization **based on soft, self-attention mechanism**. In contrast, current state of the art relies on complex LSTM/GRU encoder-decoder methods.
- A demonstration that a recurrent network can be successfully replaced with simpler, attention mechanism for the video summarization.

Dataset

- TVSum Dataset: https://github.com/yalesong/tvsum
- SumMe Dataset: https://gyglim.github.io/me/vsum/index.htm

Feature Extraction

- Given a time interval t, every 15 frames are collected in an ordered set X
- Each set then is used as input to GoogLeNet for feature extraction
- Then we extract the Pool 5 layer of GoogLeNet, which is a 1024 dimensional array (D = 1024).

Input: CNN features

Attention Network

• Unnormalized self-attention weight $e_{t,i}$ is calculated as an alignment between input feature X_t and the entire input sequence

$$e_{t,i} = s[(Ux_i)^T(Vx_t)]$$
 $t = [0, N), i = [0, N)$

Where,

N: Number of frames

U, V: Network weight matrices estimated together with other parameters of the network during optimization

s: Scale paramenter

• The attention weights α_t are true probabilities representing the importance of input features with respect to the desired frame level score at the time t

$$\alpha_{t,i} = \frac{\exp(e_{t,i})}{\sum_{k=1}^{N} \exp(e_{t,k})}$$

Attention Network

Input: CNN features

Regressor Network

- Linear transformation C is then applied to each input and the results then weighted with attention vector α_t and averaged.
- The output is a context vector c_t which is used for the final frame score regression.

$$oldsymbol{b}_i = oldsymbol{C}oldsymbol{x}_i$$

$$oldsymbol{c}_t = \sum_{i=1}^N lpha_{t,i} oldsymbol{b}_i \qquad oldsymbol{c}_t \in \mathbb{R}^D$$

• The context vector c_t is then projected by a single layer, fully connected network with linear activation and residual sum followed by dropout and layer normalization.

$$oldsymbol{k}_t = norm(dropout(oldsymbol{W}oldsymbol{c}_t + oldsymbol{x}_t))$$

Regressor Network

Inference

- The output of the model VASNet is a probability of importance per frame
- This probability must be analyzed in the range of the scene it corresponds
- However to get the number of frames is relative per video
- The problem to find the frames where a change a scene exist is called **changepoint detection**.
- For the datasets used, the changepoints (cps) are already calculated by using KTS algorithm with hyperparameter tuning

Changepoint detection

 In statistical analysis, change detection or change point detection tries to identify times when the probability distribution of a stochastic process or time series changes. In general the problem concerns both detecting whether or not a change has occurred, or whether several changes might have occurred, and identifying the times of any such changes.

Kernel Temporal Segmentation (KTS)

- Kernel Temporal Segmentation (KTS) method splits the video into a set of non-intersecting temporal segments.
- It treats the cps detection as a dynamic programming problem.
- The method is fast and accurate when combined with highdimensional descriptors.

Measuring method

P: Precision

R: Recall

F Score: [2 * P * R / (P + R)] * 100

Dataset Results

Method	SumMe		TvSum	
	Canonical	Augmented	Canonical	Augmented
dppLSTM [40]	38.6	42.9	54.7	59.6
M-AVS [15]	44.4	46.1	61.0	61.8
$DR-DSN_{sup}$ [42]	42.1	43.9	58.1	59.8
SUM-GAN _{sup} [23]	41.7	43.6	56.3	61.2
$SASUM_{sup}$ [35]	45.3	(2 5)	58.2	-
Human	64.2	-	63.7	-
VASNet (proposed method)	49.71	51.09	61.42	62.37

Results

Dataset Results

- Long video: https://youtu.be/873CBVbPJVE
- Summarize: https://youtu.be/weW4memH3Dq
- Full playlist: https://www.youtube.com/playlist?list=PLEdpjt8KmmQMfQEat4HvulxORwiO9q9DB

References

Reference

- VASNet: https://arxiv.org/pdf/1812.01969.pdf
- VASNet official implementation: https://github.com/ok1zjf/VASNet
- KTS implementation: https://github.com/TatsuyaShirakawa/KTS
- Video summarization datasets and review: https://hal.inria.fr/hal-01022967/PDF/video_summarization.pdf
- Issue on testing on own videos: https://github.com/ok1zjf/VASNet/issues/2