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THE DATA SCIENCE OF PHYSICS
RIKEN    ENRICO RINALDI

Arithmer Seminar」とは、週1回、弊社社員や外部から様々な分野の方を講師に招いて、社員の知見を広めることを目的としたセミナーです。
次頁以降のスライドは、講師を務めた外部の方の作成によるものであり、許可を得て公開しています。
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ACCELERATE PHYSICS DISCOVERIES WITH AI

RIKEN Nishina Center for Accelerator-based Science



PERSONAL WEBSITE: HTTPS://ERINALDI-1.NETLIFY.COM 

WHO AM I?
▸ I am a theoretical particle physicist (High Energy and Nuclear) 

▸ I am a computational physicist   (High Performance Computing) 

▸ I transform abstract concepts into practical problems: 

▸ from a mathematical theory 

▸ to an algorithm deployed on supercomputers 

▸ analyzing large amounts of data to test hypothesis 

▸ Driven by curiosity…following the scientific method

https://erinaldi-1.netlify.com
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Self-driving “events”



Particle “tracks” and “showers”



Particle “tracks” and “showers”

FUTURE UPGRADED EXPERIMENTS WILL PRODUCE ~10X MORE DATA! 

HOW CAN WE MAKE SENSE OF IT AND HOW FAST?
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ability to recognize, classify and characterize complex sets of data

Data ??

DeNA Co., Ltd., Tokyo, Japan
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ORDERED AND DISORDERED PHASES

COLD HOTCRITICAL

Ising

Water

T
PHASE TRANSITION DISORDEREDORDERED

CAN WE PREDICT ANY OF THIS WITHOUT KNOWING THE 
MICROSCOPIC DETAILS? 

DO WE NEED A FULL UNDERSTANDING OF THE COMPLEX DYNAMICS 
TO MAKE PREDICTIONS?
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UNSUPERVISED CLUSTERING
PCA, t-SNE, k-Means
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MACHINE LEARNING FOR PHYSICS - REALLY ONLY STARTED ~2016

SHOWCASING THE BEST OF JAPAN’S PREMIER RESEARCH ORGANIZATION • www.riken.jp/en/research/rikenresearch

WINTER 2018

FLY BY THE SEAT OF THEIR PANTS
These insects find each other  

via fecal pheromones

DREAM GENES
Two DNA markers control 
our most vivid sleep state

SNAP FREEZE
Quick cooling reveals  
new superconductors

MACHINE  
LEARNING

Japan is poised to reap  

the benefits of clever artificial  

intelligence algorithms

CONCLUSIONS AND OUTLOOK
▸ ML is applied to several branches of 

physics: particle, statistical, astro… 

▸ Physics is a complex problem with 
plenty of opportunities for Deep 
Learning algorithms 

▸ Experimental and Computational 
physics provide a very large amount 
of data (sensors or simulations) 

▸ Lead top500 supercomputers  have 
demonstrated amazing ML 
capabilities and applications 

▸ weather, earthquakes, etc… 

https://blogs.nvidia.com/blog/2018/09/17/nvidia-volta-tensor-core-gpus-gordon-bell-finalists/


EXTRA MATERIAL
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MASSIVELY PARALLEL SUPERCOMPUTERS FOR IN-SILICO PHYSICS

LATTICE QUANTUM FIELD THEORY - OVERVIEW

‣DISCRETIZE SPACE AND TIME 
‣ LATTICE SPACING a 
‣ LATTICE SIZE L 

‣KEEP ALL D.O.F. OF THE THEORY 
‣ NOT A MODEL! 
‣ NO SIMPLIFICATIONS 

‣AMENABLE TO NUMERICAL METHODS 
‣ MONTE CARLO SAMPLING 
‣ USE SUPERCOMPUTERS 

‣PRECISELY QUANTIFIABLE AND IMPROVABLE 
UNCERTAINTIES 

‣ SYSTEMATIC: L➝∞, a➝0 
‣ STATISTICAL: √N
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NEW DIRECTIONS IN LATTICE QUANTUM FIELD THEORY WITH ML

MACHINE LEARNING IS INSPIRING NEW ALGORITHMS

▸ it is costly to generate 
configuration with 
MCMC in certain 
regimes 

▸ accelerate sampling with 
generative models 

▸ examples: RBMs, 
normalizing-flow models, 
GANs, self-learning

▸ unsupervised algorithms 
can be used to detect 
phase transitions in 
materials 

▸ reconstruct microscopic 
parameters from 
macroscopic observations 

▸ spectral inference can be 
used to find eigenfunctions 
of quantum systems

GENERATION MEASURE
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GENERATION MEASURE

1. ORGANIZING (AI + LATTICE) WORKSHOPS 
2. PAPERS IN PREPARATION ON USE CASES 

FOR GAN AND PHASE TRANSITIONS 
3. SUPERCOMPUTERS ARE AI-READY



GALACTIC ROTATION VELOCITY

GRAVITATIONAL LENSING

Rubin and Ford (1970)

Subaru Telescope 

3D MapDark Matter
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