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ACCELERATE PHYSICS DISCOVERIES WITH Al



PERSONAL WEBSITE: HTTPS://ERINALDI-1.NETLIFY.COM

WHO AM |?

» | am a theoretical particle physicist (High Energy and Nuclear)
» | am a computational physicist (High Performance Computing)
» | transform abstract concepts into practical problems:

» from a mathematical theory

» to an algorithm deployed on supercomputers

» analyzing large amounts of data to test hypothesis

» Driven by curiosity...following the scientific method


https://erinaldi-1.netlify.com
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CMS CMS Experiment at the LHC, CERN
Data recorded: 20124un-05 09:58:43.400262 GMT(11:58:43 CEST)
Run / Event: 195552 / 61758463 \

?ATLAS
EXPERIMENT
http://atlas.ch
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Event: 143576946
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55 cm

Run 3469 Event 53223, October 21°%%, 2015/

Particle “tracks” and “showers”




e FUTURE UPGRADED EXPERIMENTS WILL PRODUCE ~10X MORE DATA!

HOW CAN WE MAKE SENSE OF IT AND HOW FAST?

Particle “tracks” and “showers”
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The scientists’ apprentice - Tim Appenzeller
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Mastering the game of Go with deep

neural networks and tree search

A computer Go program based on deep neural

networks defeats a human professional...
show more

David Silver, Aja Huang [...] & Demis Hassabis

Nature Letter

Image reconstruction by domain-
transform manifold learning

Image reconstruction is reformulated using a
data-driven, supervised machine learning...
show more

Bo Zhu, Jeremiah Z. Liu [...] & Matthew S. Rosen

Bio-inspired Intelligence

Robotics | Machine Intelligence and Society

Nature Review Article

Number of events (107)

Machine learning at the energy and
intensity frontiers of particle physics

The application and development of machine-
learning methods used in experiments at...
show more
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Nature Review Article
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Yann LeCun, Yoshua Bengio & Geoffrey Hinton
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Glider soaring via reinforcement
learning in the field
A reinforcement learning approach allows a

suitably equipped glider to navigate thermal
plumes autonomously in an open field.

Gautam Reddy, Jerome Wong-Ng [...] & Massimo

Vergassola

Machine learning phases of matter

The success of machine learning techniques in
handling big data sets proves ideal for...
show more
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ability to recognize, classify and characterize complex sets of data
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PHASE TRANSITIONS

ORDERED AND DISORDERED PHASES
e

CAN WE PREDICT ANY OF THIS WITHOUT KNOWING THE "Wl
MICROSCOPIC DETAILS? - "

DO WE NEED A FULL UNDERSTANDING OF THE COMPLEX DYNAMICS

Ising

T0 MAKE PREDICTIONS?
ER— T
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MACHINE LEARNING PHASES OF MATTER
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MACHINE LEARNING FOR PHYSICS - REALLY ONLY STARTED ~2016

CONCLUSIONS AND OUTLOGK

ML is applied to several branches of
physics: particle, statistical, astro...

Physics is a complex problem with
plenty of opportunities for Deep
Learning algorithms

Experimental and Computational
physics provide a very large amount
of data (sensors or simulations)

Lead top500 supercomputers have
demonstrated amazing ML

capabilities and applications

SNAP FREEZE«#® FLY BY THE SEAT OF THEIR PANTS DREAMTGENES

Quick cooling reveals These insects find each other Two DNA markers control
new superconductors via fecal pheromones our most vivid sleep state

» weather, earthquakes, etc...


https://blogs.nvidia.com/blog/2018/09/17/nvidia-volta-tensor-core-gpus-gordon-bell-finalists/

EXTRA MATERIAL



Nature 558, 91-94 (2018) nature

International journal of science

Letter = Published: 30 May 2018

A per-cent-level determination of the
nucleon axial coupling from quantum
chromodynamics

C. C. Chang, A. N. Nicholson, E. Rinaldi, E. Berkowitz, N. Garron, D. A. Brantley, H. Monge-Camacho,
C. J. Monahan, C. Bouchard, M. A. Clark, B. Jod, T. Kurth, K. Orginos, P. Vranas & A. Walker-Loud

Nature 558,91-94 (2018) = Download Ci Nuclear Scientists Calculate Value of Key Property that
Drives Neutron Decay
Supercomputer simulations of neutrons' inner turmoil and a new method
l =

that filters out "noise" yield the highest-ever precision calculation of nucleon
E' b?ﬁ%F axial coupling, a property crucial to predicting neutron lifetime
RIKZN

May 30, 2018

UPTON, NY—Using some of the world’s most
powerful supercomputers, an international
team including scientists from several U.S.
Department of Energy (DOE) national
laboratories has released the highest-
precision calculation of a fundamental
property of protons and neutrons known as

:t —r nucleon axial coupling. This quantity
— \ ' { \ E o %j] determines the strength of the interaction that
triggers neutrons to decay into protons—and
# / D can therefore be used to more accurately
.

predict how long neutrons are expected to

“live.” The results appear in Nature.

Home > L#:ES > 7LAY U —X (FIRRE

“The fact that neutrons decay into protons is a
very, very important fact in the universe,” said
Enrico Rinaldi, a special postdoctoral

researcher at the RIKEN BNL Research Center
ﬁﬁ%ﬁiﬂ at DOFE's Brookhaven National Laboratory,
who was involved in developing simulations

essential to the new calculation. “It basically

20 ] 8-4155% 3 ] E tells you how atomic nuclei—made of protons
AT and neutrons—were created after the Big
B LR
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Nature 558, 91-94 (2018)

SCIENCE

nature

International journal of science

Published: 30 May 2018

‘cer
&

.

AWARD FINALISTS DEMONSTRATE/
IMPROVED-QCD CODE FO -

SUPERCOMPUTING |

Art by Bart-W. van Lith

<

Modeling nuclei using fundamental quantum mechanics equations is a big job
to manage, even for the world’s fastest computers.

his article is part of a series covering the finalists for the 2018 Gordon Bell Prize that used the Summit supercomputer.

The prize winner will be announced at SC18 in November in Dallas.

There is a fine line between particle physics and nuclear physics at which the subatomic particles quarks and gluons first

join into protons and neutrons, then into atomic nuclei.

On one side of this line is the universe as it should be according to the Standard Model of particle physics: nearly devoid of matter
and filled with leftover radiation from the mutual destruction of matter and antimatter. On the other side of this line is the

universe as we observe it: space-time speckled with matter in the form of galaxies, suns, and planets.

To understand the asymmetry between matter and antimatter, scientists are using massive supercomputers in the search for new
physics discoveries. Through a sophisticated numerical method known as lattice quantum chromodynamics (QCD), scientists
calculate the interactions of quarks and gluons on a lattice of space-time to study the emergence of nuclei from the fundamental
physics theory of QCD. By bridging the studies of particle interactions and atomic nuclei, lattice QCD simulations are also an entry

point for learning much more about how the universe works.

One of the QCD research teams leading this charge is improving its ability to compute the precise duration of the neutron lifetime

on the latest generation of US Department of Energy (DOE) supercomputers, including the 200-petaflop Summit supercomputer

at DOE's Oak Ridge National Laboratory (ORNL) and the 125-petaflop Sierra supercomputer at DOE’s Lawrence Livermore
National Laboratory (LLNL).
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DISCRETIZE SPACE AND TIME

KEEP ALL D.0.F. OF THE THEORY

AMENABLE TO NUMERICAL METHODS

PRECISELY QUANTIFIABLE AND IMPROVABLE
UNCERTAINTIES
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NEW DIRECTIONS IN LATTICE QUANTUM FIELD THEORY WITH ML

accelerate sampling with
generative models

examples: RBMs,
normalizing-flow models,
GAN:s, self-learning

MACHINE LEARNING IS INSPIRING NEW ALGORITHMS

GENERATION

» itis costly to generate
configuration with
MCMC in certain

regimes

» unsupervised algorithms

can be used to detect
phase transitions in
materials

reconstruct microscopic
parameters from
macroscopic observations

spectral inference can be
used to find eigenfunctions
of quantum systems



NEW DIRECTIONS IN LATTICE QUANTUM FIELD THEORY WITH ML

MACHINE LEARNING IS INSPIRING NEW ALGORITHMS

GENERATION

» itis costly to generate
configuration with
MCMC in certain

regimes

» accelerate sampling with
generative models

exa As—
normalizing-flow models
ANs, self-learning

nsupervised algorith
can be used to detect
phase transitions in
terials

» reconstruct microscopic
parameters from
macroscopic observations

» spectral inference can be
used to find eigenfunctions
of quantum systems



NEW DIRECTIONS IN LATTICE QUANTUM FIELD THEORY WITH ML

MACHINE LEARNING IS INSPIRING NEW ALGORITHMS

GENERATION

» itis costly to generate ~unsupervised algorithrr

a1 be used to detect
ansitions in

configuration wijk
MCMC in certai
regimes

ct microscopic
ers from
opic observations

» accelerate samj
generative moc

exa As—
normalizing-flow models
ANs, self-learning

» spectral inference can be
used to find eigenfunctions
of quantum systems




GRAVITATIONAL LENSING

A

Rubin and Ford (1970)
Observed

Rotation Velocity

Expected
GM

[

() =

S Subaru Telescope

istance from Galactic Center



	スライド番号 1

